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“Curse of dimensionality” is the contradiction between mathematical 
requirement for optimal gene signatures to contain no more than 
20-30 genes [5] and biological reality observing10-100 times more 
differentially expressed genes in cancer tumors. Such short optimal 
signature are the consequence of the small number of patient samples 
available in a training set for signature calculation compared to the 
number of correlated DE genes [6,7]. The shortage of cancer samples 
for large signature calculation is so significant that even 10-fold 
increase in the number of available samples will not yield substantial 
improvement in predictability of transcriptional signatures.

Biological considerations can provide solution to the “curse of 
dimensionality” of microarray data. Indeed,  observed transcriptional 
profile in a patient is due to the activity of transcription factors and 
micro RNAs. The number of these direct transcriptional regulators 
is much smaller than the number of genes on the microarray and in 
human genome. Thus,  the transformation of transcriptional profile 
into activity of few upstream expression regulators should provide 
significant reduction in the data space dimensionality which in turn 
should help calculating more powerful signatures [8]. Two similar 
algorithms were developed to calculate the activity of upstream 
expression regulators from microarray data using prior knowledge 
about expression regulatory events reported in the literature: 
sub-network enrichment analysis (SNEA) [9] and reverse causal 
reasoning (RCR) [10]. We used SNEA algorithm implemented in 
Pathway Studio software from Elsevier. It relies on the knowledge 
base of expression regulation events automatically extracted from 
biomedical research literature by natural processing technology. 
Pathway Studio knowledge base has the biggest number of regulatory 
events and therefore provides the most comprehensive and up-to-
date snapshot of transcriptional activity in cancer samples. SNEA 
uses non-parametric Mann-Whitney enrichment test to evaluate 
transcriptional activity of upstream regulators which was shown to 
provide superior results for microarray data analysis over overlap 
hyper geometric test implemented in RCR [11,12].

The activity of upstream expression regulators in turn depends 
on activity of pathways altered in the tumor.  Therefore projecting 
the activity of upstream expression regulators identified by SNEA 
onto collection of relatively small number of biological pathways 
relevant for cancer progression should allow us to identify cancer 
mechanism in an individual patient reducing the complexity in 
interpretation of large number of differentially expressed genes in 

Abstract
We describe methodology for developing personalized anti-cancer 
drug therapy using pathway analysis. We successfully applied this 
methodology to treat several cancer patients that were terminally 
diagnosed by standard of care criteria at the hospital. Our 
approach consists of profiling patient tumor using gene expression 
microarray and calculating pathways responsible for the differential 
expression between tumor and normal control tissue. Pathways 
are selected for treatment targeting based on their enrichment with 
major expression regulators identified by sub-network enrichment 
analysis (SNEA) in Pathway Studio. We then select FDA approved 
drugs inhibiting activated pathways and prescribe them to the 
patient. To facilitate interpretation of patient data we built collection 
of cancer pathways based on ten cancer hallmarks described in 
the literature. This collection explains function of more than half of 
expression regulators identified in patient’s tumors by SNEA. This 
paper focuses on description of pathways built for interpretation of 
expression profiles of cancer patients.

Introduction
More than 400 FDA approved drugs are currently on the market 

and were in clinical trials for treatment of common types of cancer 
in the last five years. Most of these drugs have known mechanism of 
action and directly target more than 800 proteins in human genome. 
While not every clinical trial is successful the number of treatment 
options for cancer is already large and only expected to grow in 
the future. Thus,  the major challenge for modern oncologists is 
selecting the most effective anti-cancer treatment for a patient from 
the vast number of approved anti-cancer drugs on the market. The 
proposed solution for this problem is called personalized medicine 
- development of approaches for selecting the best treatment for 
a patient based on drug mechanism of action that most optimally 
matches the molecular mechanism driving tumor growth.

Gene expression microarray technology is the oldest and most 
robust method for large scale molecular profiling of cancer patients 
[1,2]. While detection technology was improving in last two decades 
analytical methods were developed for calculating differentially 
expressed (DE) genes and transcriptional signatures from DE genes 
from the limited number of patients. These computational approaches 
yielded a lot of insights into cancer biology [3] but also revealed “curse 
of dimensionality” of the large scale molecular profiling data [4].  
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• Removal of sigmoid colon
• Radiofrequency ablation for two liver lesions
• Treated for surgical site infection
• Refused to have chemotherapy (adjuvant therapy) initially 

after the surgery
• Cancer recurrence in 2013 with multiple mets in the liver and 

lung; core biopsies were performed from the liver met for 
gene expression profiling

• In January 2014 started standard of care modified FOLFOX6 
regimen every 2 weeks with 5-FU CADD pump

• FOLFOX6 = 5-FU + Oxaliplatin + Leucovorin

Gene expression profile

Human U133 Plus 2.0 array were used to process the patients 
RNA samples. Also,  the following instruments were used: Affymetrix 
Gene Titan instrument for processing the microarrays,  GeneChip 
Hybridization oven 640,  two Fluidics Station 450s,  and Affymetrix 
Gene Chip Scanner 3000.

Calculation of differentially expressed genes in patient 
tumor biopsies

Typically,  we were able to measure only one microarray profile 
for each patient tumor biopsy.  Whenever possible we tried to 
collect syngenic samples to calculate differentially expressed genes. 
If syngenic sample was not available we used control samples from 
Gene Expression Omnibus (GEO,  http://www.ncbi.nlm.nih.gov/
geo/). For this,  we downloaded from GEO all possible profiles of 
healthy human tissues that correspond to patient tumor tissue and 
measuring expression profile on the same microarray chip (HG-U133 
plus 2.0 from Affymetrix). The same chip requirement allowed RMA 
normalization of CEL files for our patient samples together with 
samples downloaded for GEO.

For patient with colon cancer with metastasis in lung we used 
syngenic control from other healthy lung. For the patient with liver 
cancer we used syngenic control from healthy part of the liver. For 
patient with breast cancer metastasis in lung we used six normal 
breast tissue samples from GSE3744; for patient with colon cancer 
metastasis in liver we used 17 control samples from GSE32323; for 
patient with lung cancer we used 14 normal lung samples from 
GSE30219.  Differentially expressed genes in all cases were calculated 
in Pathway Studio using unpaired t-test.  P-value of differential 
expression for each probe on the array was possible to calculate only 
if patient data was normalized on multiple normal control samples 
from GEO. For these cases only probes with p-value less than 0.05 
were used as input for calculation of SNEA regulators. For genes 
measured by several probes on HG-U133 plus 2.0 chip Pathway 
Studio selects the probe with best p-value for SNEA.

Pathway Studio: SNEA and cancer pathway reconstruction

We used Pathway Studio version 9 with knowledge base containing 
data extracted by Elsevier natural language processing (NLP) technology 
from all Pubmed abstracts and from more than 2,000,000 full-text 
articles published in about 1,200 biomedical journals [14]. Elsevier 
NLP extracts various types of biological interactions for Pathway Studio 
database. In order to identify upstream expression regulators by SNEA 
we used Expression and Promoter Binding regulatory interactions. These 
relation types are included in the option “Expression targets” in Pathway 
Studio menu for SNEA. Most regulators identified by this SNEA option 
are transcription factors,  receptors,  secreted hormones and extracellular 
matrix proteins. Typically,  we were able to map about 30% of all SNEA 
regulators identified from patient expression profile on the signaling 
and cell process pathways that already existed in Pathway Studio,  e.g. 
pathways for cell cycle,  apoptosis regulation,  DNA repair and chromatin 
remodeling. For purpose of building additional cancer pathways we 
connected remaining regulators that have not been mapped on existing 
pathways,  with physical interactions in Pathway Studio database (i.e.,  
Binding,  Direct Regulation and Protein Modification) in order to 
find regulators involved in common pathway. Functionally-related 

a tumor. A set of ten high-level biological processes responsible for 
cancer progression is known as hallmarks was suggested [13]. Each 
cancer hallmark can be facilitated by several alternative mechanisms 
described in the literature but in one given patient only one of these 
alternatives is realized by the tumor at one time. Because the same 
biological mechanism may still involve different proteins in different 
tissues several hundred pathways have to be built in order to create 
a comprehensive collection of cancer hallmarks mechanisms in 
different tissues. Yet,  only a handful of these pathways will be 
activated in a single patient.

In this article we describe workflow for personalized medicine 
that uses gene expression profile of patient tumor to identify major 
expression regulators which transcriptional activity is significantly 
altered in the tumor according to SNEA. Using most significant 
expression regulators identified from five transcriptional tumor 
profiles of three cancer patients we have constructed the library of 
cancer hallmark pathways. All pathways are based on translational 
data from scientific literature that studied cancer cell lines or cancer 
in animal models. These pathways can explain activity of about 
60% expression regulators in our patients. We assert that pathways 
enriched with major SNEA regulators have altered activity in the 
tumor and therefore should be used to select drugs for personalized 
treatment.  We validated our approach by selecting drugs inhibiting 
the activity of identified pathways. Even though sometimes it was 
not possible to find drug that could directly inhibit expression 
regulators found by SNEA drugs selected based on upstream pathway 
information prolonged patient survival beyond Overall Survival 
estimates based on standard of care treatment. This article focuses 
on describing pathways identified by our approach and used for 
treatment selection.

Materials & Methods
Patients

First patient (liver cancer)
• 66 year old Caucasian female diagnosed with moderate 

to poorly differentiated hepatocellular carcinoma with 
associated necrosis

• Pet/Ct scan shows 9.0 × 7.2 × 5.7 cm right hepatic lobe mass
• Resection of hepatocellular carcinoma involving the 

ascending colon in the right lateral abdominal wall,  segments 
5 and 6 from the liver and 11 benign lymph nodes

• Core biopsies of liver tumor as well as some of the normal 
liver parenchymal cells were sent for gene expression profile 
analysis.

Second patient (breast cancer)
• 66 year old Caucasian female diagnosed in 2011 in Florida 

with stage I breast cancer,  miss-labeled as ER+/PR+,  and 
treated with Docetaxel/Cyclophosphamide (4 cycles) 
followed by hormonal therapy

• Cancer recurrence in 2013 and diagnosed with stage IV 
breast cancer with metastasis in the right lung and her brain 
(diagnose made in our practice for the first time after moving 
to North Carolina)

• Re-diagnosed (initial tumor block from Florida) as ER-/PR- 
and treated with radiation for the brain metastasis and 2 cycles 
of Adriamycin/Cyclophosphamide (dose dense standard of 
care therapy,  based on ASCO and NCCN guidelines ) for the 
breast cancer lung mets

• Brain metastasis responded to the radiation treatment but 
the lung metastasis did not respond to AC chemotherapy and 
core biopsies were performed from the lung met

• Treatment was switched to Gemcitabine (standard of care) 
until the gene expression profiling data was processed

Third patient (colon cancer)
• 74 year old Caucasian male diagnosed in 2009 with stage IV 

colon cancer 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Effect negative or Binding and then for drugs linked to SNEA regulators 
by Regulation with Effect negative.  This approach proved to find only 
limited number of FDA approved drugs because many SNEA regulators 
were not druggable. In case the drugs inhibiting SNEA regulators were 
not available we tried to find drugs inhibiting activity of the cell process 
activated in a patient according to pathway analysis. The cell process 
regulated by one of the cancer pathways was usually also significant in 
SNEA with option using Cell Process as seed entity. This SNEA option 
finds Cell Process entities regulated by DE genes. Because DE genes 
regulating the cell process are downstream of the pathway regulating 
this cell process we observed correlation between results of two SNEA 
options: “Expression targets” and “Proteins regulating cell process”. 
The drugs were selected by finding appropriate Cell Process entity (e.g. 
“Epithelial-to-mesenchymal transition” or “Cell invasion”) in Pathway 
Studio and expanding it upstream towards Small Molecules with 

regulators appeared as clusters in the physical interaction network. We 
then performed literature search to find articles reporting on the role of 
proteins in cancer in each network cluster.  We preferred to use one or 
several review articles found by the literature search to reconstruct new 
cancer pathways in Pathway Studio (Table 1). If review articles were not 
available we used an original research articles that reported on the role of 
patient expression regulators in cancer.

Pathway Studio: drug selection

We used relations depicting drug effects extracted by Elsevier NLP 
ChemEffect cartridge [15] in order to find drugs for patient treatment. 
Our drug selection was done by following progressive steps. First,  we 
attempted to find FDA-approved anti-cancer drugs inhibiting activated 
expression regulators that have been identified by SNEA. For this,  we 
looked for drugs linked to SNEA regulators by Direct Regulation with 

Table 1: List of cancer hallmark pathways with supporting literature. PMID – Pubmed ID of the article used for pathway reconstruction. Cancer hallmark processes 
are borrowed from [13].

Cancer Hallmark Pathway Name Number of 
entities

Number of 
relations

Publication PMIDs

Sustaining proliferation EGFR activation by apoptotic clearance 69 91 16000554,  12069816,  15273989
Sustaining proliferation Cell cycle 144 225 Available in Pathway Studio
Sustaining proliferation Bombesin trans-activation of EGFR 51 75 12069816,  16377102
Sustaining proliferation F2 -> AP-1/CREB/ELK-SRF/SP1 Expression Targets 128 200 Available in Pathway Studio
Sustaining proliferation DREAM complex->quiescence 27 36 23842645

Resisting cell death Extrinsic and Intrinsic Apoptosis pathways 100 166 Available in Pathway Studio
Resisting cell death Hypoxia->ROS->Apoptosis 45 62 11266442,  
Resisting cell death oxLDL->apoptosis 20 18
Resisting cell death F2 -> STAT1/NF-kB Expression Targets 94 102 Available in Pathway Studio

Angiogenesis Hypoxia->ROS->HIF->Angiogenesis 49 88
Angiogenesis Blood vessel maturation and stability 54 90
Angiogenesis VEGFR->endothelial proliferation 74 151
Angiogenesis oxLDL->angiogenesis 57 66
Angiogenesis TNC->angiogenesis 47 81
Angiogenesis F2->Angiogenesis 35 51 15598469

Invasion & Metastasis ICAM1 -> AP-1/CREB/ELK-SRF signaling 29 51 Available in Pathway Studio
Invasion & Metastasis Wnt ->EMT 52 72
Invasion & Metastasis Hypoxia->EMT 43 76
Invasion & Metastasis FGFs stabilize RUNX2 47 67 12110689,  12403780
Invasion & Metastasis TGFB loop 116 185 1609872,  17296934,  22151997
Invasion & Metastasis FLT1 mediates survival in post-EMT cancer cells 58 115 14521839
Invasion & Metastasis IGF1R ->EMT 51 68 19148466,  23994953
Invasion & Metastasis EDN->EMT 81 143 19880243,  18718806
Invasion & Metastasis HGF->MET->EMT 63 120 23474222,  23229794
Invasion & Metastasis PDGF ->EMT 50 66 23261166,  23788982
Invasion & Metastasis Calveolin -| EMT in lipid rafts 32 43
Invasion & Metastasis EGF->FOXM1/FOXOA 111 225
Invasion & Metastasis EGF->EMT 104 230
Invasion & Metastasis AR->PSA in Prostate Cancer 17 20
Invasion & Metastasis FoxM1 loop 7 10
Invasion & Metastasis ECM->EMT 126 256
Invasion & Metastasis CDH11 adherens junction 16 24 22593800
Invasion & Metastasis PDGF-D->EMT 85 172 23261166
Invasion & Metastasis F2 modulation of cytoskeleton 100 172
Invasion & Metastasis F2 modulation of vascular permeability 62 111
Invasion & Metastasis Coagulation cascade in cancer 63 73 23691951, 11908507, 11516455
Invasion & Metastasis UrokinaseR signaling 45 74
Tumor inflammation “Find me” signals in apoptotic clearance 90 111 19932201,  23284042,  22871044,  15928001,  

22973558
Tumor inflammation “Eat me” signals in apoptotic clearance 60 113 19932201,  22973558
Tumor inflammation Transcellular biosynthesis of eicosanoids 28 26 1380800
Tumor inflammation oxLDL->macrophage activation 58 72
Tumor inflammation Lymphotoxin B signaling 38 64 20603617

Avoid immune destruction OSM signaling 168 252
Avoid immune destruction N1->N2 neutrophil polarization 44 58 21798756
Avoid immune destruction TANs antitumor activity 13 13 21798756
Avoid immune destruction TENs kill tumor cells 36 44 21907922
Avoid immune destruction M1->M2 macrophage polarization 43 48 16269622

EMT:  Epithelial-to-Mesenchymal Transition,  LDL: Low-Density Lipoprotein,  oxLDL: Oxidized LDL,  EGFR: Epithelial Growth Factor,  ROS: Reactive Oxygen Species,  
HIF: Hypoxia-Induced Factor,  ECM: Extracellular Matrix,  F2: Thrombin,  TAMs: Tumor Associated Macrophages,  TANs: Tumor Associated Neutrophils,  TENs: Tumor 
Entrained Neutrophils
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Figure 1A: Shows FoxM1 activation by EGFR. Pathway shows how FoxM1 protein is activated by EGFR and how FoxM1 activates cell proliferation and epithelial-
to-mesenchymal transition.

Figure 1B: Shows TGF-beta autocrine loop that establishesmesenchymal state in the tumor cells. This pathway was found activated in all three patients (Table 
3). The primary positive feedback loop represents almost canonical knowledge. It consists of TGF-beta expression activation by SMAD3/4 transcription factors,  
which are in turn induced by TGF-beta receptor signaling. Secondary positive feedback loop is novel finding based on the analysis of available literature about 
TGF-beta activation. It includes induction of RUNX1/2 by SMAD3/4 which then induces expression of TGF-beta receptors and integrins that increase binding of 
TGF-beta ligand to cell surface. Additionally,  expression growth hormone receptors FGFR2 and FLT1 are induced to sustain cells in proliferative state that tis 
necessary for EMT.  RUNX aldo induce transcription of angiogenic factor VEGF and extracellular matrix adhesion molecule CD44 necessary for cell migration.

1A

1B

Protein

Cell Process

Functional Class

Small Molecule

Regulation

Mol Transport

Chemical Reaction

Direct Regulation

Expression

Promoter Binding

Binding

Prot Modification

FLT1 mediates survival in
post-EMT cancer cells

Figure 1: Four representative pathways that were found activated in several cancer patients according to our analysis. The complete list of such pathways is available 
in table 2 and table 3. All pathways were enriched with major expression regulators identified by SNEA with p-value smaller than 0.05 according to Fisher exact test.  

trial of Sorafenib + Voronistat combination at the Massey Cancer 
Center in Richmond,  Virginia after approval by its ethics committee.

Results
Pathway collection for analysis of cancer patients

We have constructed 49 pathways containing 2,779 proteins (Table 
1).  Pathways represent different mechanisms for ten cancer hallmark 
processes [13]. Pathways for cell cycle,  apoptosis,  DNA repair,  

Regulation Effect negative. As additional selection criteria we preferred 
the drugs with demonstrated efficacy against the type of cancer developed 
in the analyzed patient. We could check known drug efficacy in Pathway 
Studio by looking up the relations between the drug and the right type of 
cancer with Regulation relation with Effect negative.

Statement of ethics

All but one patient were treated with FDA approved drugs 
prescribed by physician.  Liver cancer patient was placed on a clinical 
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chromatin remodeling,  and EGFR signaling were copied from existing 
Pathway Studio pathway collection with minor modifications that added 
patient SNEA regulators involved in the same process.  New pathways 
were built to depict the roles of found SNEA regulators in cancer as 
described in Materials & Methods section.  The list of cancer pathways 

with supporting articles used for pathway construction is available in 
table 1.  Several representative pathways are shown on figure 1. Our 
pathways explain function of 378 out of 600 top 100 SNEA regulators 
in every patient (63%). About 20% of remaining unexplained regulators 
were proteins involved in immune response. These proteins are likely to 

 

1C

1D

Figure 1C: Depicts “Find me” signals” in apoptotic clearance – certain molecules in apoptotic debris that serve as signals for macrophage activation. This pathway 
was found activated in all three patients (Table 3).

Figure 1D: Depicts EGFR activation by apoptotic clearance. This pathway resembles the wound healing pathway and was found activated in all three patients 
(Table 3). “Find-me” signals from apoptotic debris (LPC) activatemacrophages growth factors to secrete growth factors. LPC is also converted into LPA by 
secreted lysophospholipase D. LPA activates LPA receptor on the surface of epithelial cells that in-turn activate NF-kappa-B transcription factor in order to express 
and secrete matrix metalloproteases (e.g. ADAM17).  These matrix metalloproteases convert growth factors secreted by macrophages into activated form and 
induce cell proliferation.  Depiction of cells from adaptive immune response secreting EGFR ligands is based on the relatively new report [21] from 2013.
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Table 2: Representative cancer pathways enriched by top SNEA regulators found in patient tumors. Two metastatic tumors in lung from form the patient with metastatic 
colon cancer were analyzed.  Receptor signaling pathways were considered activated only if at least one of its hormones or receptors was among SNEA regulators in 
patient. Such key regulators are shown in bold font in the last column.  First column shows the tumor type for which the pathway was built based on SNEA regulators 
profile.  All pathways were enriched with major expression regulators identified by SNEA with p-value smaller than 0.05 according to Fisher exact test.  

Patient tumor Pathway # SNEA regulators 
in pathway

# entities in 
pathway

Names of SNEA regulators in pathway

Liver cancer liver biopsy EGFR activation by 
apoptotic clearance

7 69 HBEGF, EREG, LPAR2, S1PR1, S1PR3, LPA receptor, 
S1PR

Liver cancer liver biopsy N1->N2 neutrophil 
polarization

8 44 ELN, CCL4, CCR5, CD7, SECTM1, DEFB4A, SERPINA1, 
SERPINB1

Liver cancer liver biopsy PDGF ->EMT 8 50 ZEB1, SNAI2, SNAI1, PDGFD
Liver cancer liver biopsy "Eat me" signals in 

apoptotic clearance
6 60 OLR1, ANXA1, THBS1, alpha5beta5 integrin

Liver cancer liver biopsy EGF->FOXM1/FOXOA 6 111 FOXF1, SNAI2, SNAI1, HBEGF, EREG
Liver cancer liver biopsy M1->M2 macrophage 

polarization
4 43 ASGR1, MRC1, CHIA, CHIT1

Liver cancer liver biopsy Coagulation cascade in 
cancer

5 63 THBD, F10, F13A1, F2, F13B

Liver cancer liver biopsy Hypoxia->EMT 5 43 KLF5, SNAI2, EGLN1
Liver cancer liver biopsy Lymphotoxin B signaling 2 38 LTBR, LTA
Breast cancer metastasis in lung ECM->EMT 11 126 AGER,  SPARC,  HSPG2,  S100A7,  CTGF,  IGF2,  TNC,  

PAK1,  PTK2B,  IGFBP,  LPA receptor
Breast cancer metastasis in lung F2 modulation of vascular 

permeability
4 62 F2, PLG, RHOA, ROCK1

Breast cancer metastasis in lung EGF->FOXM1/FOXOA 7 111 CAT, KLF8, ERBB2, PAK1, PTK2B, CCND1, CCNB1
Breast cancer metastasis in lung OSM signaling 9 168 TNFRSF11B, OSM, THBS1, PLAU, CCND1, S100A8, 

S100A9, CRP, DEFB4A
Breast cancer metastasis in lung Coagulation cascade in 

cancer
4 63 F2, PLG, PLAU, TFPI

Breast cancer metastasis in lung PDGF-D->EMT 4 85 PDGFD, IGF2, PAK1, PTK2B
Colon cancer metastasis in liver Coagulation cascade in 

cancer
8 63 F3, TFPI2, F7, F10, F12, PLG, PLAU, plasmin

Colon cancer metastasis in liver OSM signaling 13 168 CEBPA, CEBPB, MYC, PPARD, F3, IL6, OSM, CYR61, 
PLAU, MMP3, SERPINA1, S100A4, acute-phase protein

Colon cancer metastasis in liver TGFB loop 7 116 FOXM1, KLF5, TCF7L2, KRT8, CTGF, TGFB2, MMP3
Colon cancer metastasis in liver ECM->EMT 7 126 FOXM1, MYC, EIF4E, EIF4EBP1, CTGF, S100A4, RPS6K
Colon cancer metastasis in liver Cell cycle 5 144 TFDP1, MYC, ZBTB17, TGFB2, E2F
colon cancer metastasis in lung 
cancer

VEGFR->endothelial 
proliferation

7 74 ELK1, SRF, KDR, VEGFA, GRB2, MAPK14, endostatin

colon cancer metastasis in lung 
cancer

EDN->EMT 7 81 ELK1, SRF, EDN3, EDN1, PRKCD, MAPK14, GNA13

colon cancer metastasis in lung 
cancer

ECM->EMT 9 126 GATA6, SRF, HBEGF, VEGFA, GRB2, MAPK14, BCAR1, 
ADAM17, LPA receptor

colon cancer metastasis in lung 
cancer

EGFR activation by 
apoptotic clearance

6 69 HBEGF, LPAR3, LPAR1, ADAM17, LPA receptor, 
Ga12/13

colon cancer metastasis in lung 
cancer

EGF->EMT 7 104 GATA6, KLF5, SRF, HBEGF, GRB2, MAPK14, BCAR1

colon cancer metastasis in lung 
cancer

Hypoxia->ROS->HIF-> 
Angiogenesis

4 49 HIF3A, TEK, KDR, VEGFA

colon cancer metastasis in lung 
cancer

PDGF-D->EMT 5 85 TCF7, VEGFA, PDGFD, GRB2, MAPK14

colon cancer metastasis in lung 
cancer-2

Hypoxia->ROS->HIF-
>Angiogenesis

7 49 YBX1, HIF3A, EPAS1, TEK, KDR, VEGFA, RHOC

colon cancer metastasis in lung 
cancer-2

ECM->EMT 12 126 YBX1, FOXM1, EGFR, ACTG2, SPARC, HBEGF, VEGFA, 
IGF2, MAPK14, SRC, ADAM17, LPA

colon cancer metastasis in lung 
cancer-2

Hypoxia->EMT 6 43 CDH1, YBX1, KLF5, HIF3A, EPAS1, VEGFA

colon cancer metastasis in lung 
cancer-2

TGFB loop 10 116 CDH1, FOXM1, KLF5, CD44, ACTG2, VEGFA, TGFB2, 
SMAD7, MMP3, MMP9

colon cancer metastasis in lung 
cancer-2

F2 modulation of vascular 
permeability

3 62 F2, PLG, SRC

colon cancer metastasis in lung 
cancer-2

Bombesin trans-activation 
of EGFR

5 51 EGFR, HBEGF, SRC, GRPR, ADAM17

colon cancer metastasis in lung 
cancer-2

EGFR activation by 
apoptotic clearance

6 69 PPAP2B, EGFR, HBEGF, ADAM17, LPA, Ga12/13

colon cancer metastasis in lung 
cancer-2

EGF->EMT 8 104 YBX1, FOXM1, KLF5, EGFR, ACTG2, HBEGF, MAPK14, 
SRC

colon cancer metastasis in lung 
cancer-2

IGF1R ->EMT 4 51 YBX1, ACTG2, IGF2, SRC

colon cancer metastasis in lung 
cancer-2

oxLDL->apoptosis 2 20 OLR1, NAD(P)H oxidase

colon cancer metastasis in lung 
cancer-2

"Find me" signals in 
apoptotic clearance

6 90 IL6R, PRKCD, MMP9, ADAM17, phospholipase D, 
sphinganine kinase

contribute to tumor-induced inflammation. We did not consider these 
proteins as therapeutic targets for our patients and therefore we do not 
describe them in this paper.

Identification of pathways with altered activity in cancer 
patients

Top 100 SNEA regulators with p-value less than 0.05 were 
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Figure 2A: N1->N2 neutrophil polarization pathway showing how tumor causes re-differentiation on invading neutrophils into N2 phenotype that can promote 
tumor growth through the release of angiogenic factors and induction of migration.

Figure 2B: PDGF->EMT pathway showing how epithelial-to-mesenchymal transition is caused by the family of PDGF hormones through the induction of the 
standard EMT transcriptions factors: SNAIL, ZEB and catenin-neta.

2A

2B

Figure 2: Additional pathways showing SNEA expression regulators identified in cancer patients by highlight. Different highlight colors correspond to different 
patients used in this study: orange – first lung cancer patient; green – second lung cancer patient; red – liver cancer patient; figure legend is shown on figure 1A. 
All pathways were enriched with major expression regulators identified by SNEA with p-value smaller than 0.05 according to Fisher exact test.  

“Find similar pathways”. Because many signaling pathways share 
common intracellular signaling components such as MAPK kinases 
and activation of stress or inflammatory response transcription 
factors (e.g. AP1,  STATs,  CREBs,  NF-κB) we have used additional 

determined in every patient tumor sample and compared with our 
cancer pathway collection to find pathways enriched with SNEA 
regulators. Statistical significance of enrichment was determined 
by Fisher’s exact test implanted in Pathway Studio menu option 
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2C

2D

Figure 2C: Phosphatidylserine is the major “eat me” signals of apoptotic cells inducing macrophage phagocytosis of apoptotic debris.

Figure 2D: ECM->EMT pathway shows how epithelial-to-mesenchymal transition is induced by several extracellular matrix (ECM) proteins that induce integrin 
outside-in signaling that lead both to activation of proliferation and invasive phenotype due to activation of FoxM1 and YBX1.

driven by hypoxia via activation of HIF1 transcription factor,  by 
thrombosis via activation of thrombin (F2),  and by oxidized LDL. 
EGFR activation was due to macrophages activation releasing of 
oncostatin and HB-EGF. Macrophages were activated mainly by 
apoptotic debris clearance and by oxidized LDL. Apoptotic debris 
clearance is also known to induce HB-EGF conversion into active form 
via lysophosphatidic acid accumulation [16]. Tumor invasiveness was 
driven by epithelial-to-mesenchymal transition (EMT) promoted by 
hormones PDGF,  IGF,  TGFB; extracellular matrix proteins CTGF 
and SPARC; and transcription factor KLF5.  Tumor proliferation 
was sustained through activation of EGFR. Observed activation of 
components of dREAM complex (LIN9,  MYBL2,  E2F3) responsible 
for transition between quiescent and proliferative states probably 

criteria to select activated pathways: the ligand or corresponding 
receptor initiating the pathway must be on the list of major regulators 
calculated by SNEA. The results for each patient are shown in 
table 2 and figure 2. We found that patient’s tumor profiles were 
more similar on the level of activated pathways then on the level of 
individual SNEA regulators. Table 3 lists 26 pathways that were found 
activated in all three patients. Patient differences on the level of SNEA 
regulators were most likely due to tissue specificity of gene expression 
since two patients with lung cancer had 72% of SNEA regulators in 
common while only 10% of regulators were common in patients with 
cancers from different tissues.

Table 4 lists most common SNEA regulators found among three 
patients. In summary,  we found that angiogenesis in patients was 
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Figure 3A: Shows example of selecting using ChemEffect knowledgebase in Pathway Studio. BRCA1 protein was found to be a major expression regulator in 
patient with breast cancer metastasis in the lung.  While NS-398 and trichostatin A were shown to inhibit BRCA1 [52,53] there were not FDA approved for cancer 
treatment. Olaparib and iniparib, however, were in several clinical trials for breast cancer as indicated by http://clinicaltrial.gov. Both drugs inhibit PARP1– the 
direct upstream activator of BRCA1 in breast cancer.

Figure 3B: Shows selection of Vorinostat for patient with liver cancer based on the efficacy towards epithelial-mesenchymal transition.  Pathway analysis of 
SNEA regulators found that tumor had hypoxia-induced EMT. Unfortunately, EMT is driven by transcription factors such as ZEB1/2, SNAIL1/2, KLF5 that are 
not druggable. Vorinostat, however, is the only FDA-approved drug that is known to inhibit epithelial-mesenchymal transition and was effective against several 
types of cancer in clinical trials. Figure shows the mechanism for Vorinostat action in gallbladder cell line by breaking tumor immune-tolerance through inhibition 
of indoleamine 2,3-dioxygenase (IDO1) [54].

Figure 3C: Shows selectionof drugs inhibiting DREAM complex in patient with lung cancer. DREAM transcription factor complex governs cell transition from 
quiescent to proliferative state. The gene expression of its components is shown by color of protein nodes: red – protein expression is up-regulated in the tumor 
compared with syngenic control of healthy lung; blue - protein expression is down-regulated in the tumor. Different highlights around the proteins show SNEA 
regulators identified in different cancer patients.  SNEA regulators from the lung cancer patient whose expression profile is shown on the pathwayis highlighted in 
green.  Because principal components of the DREAM complex are not druggable pathway analysis found drugs inhibiting its upstream regulator – CDK4 kinase.  
One of these inhibitors Palbociclib (Ibrance) is also known to indirectly inhibit FoxM1 transcription factor important not only for cell proliferation but also for invasive 
tumor phenotype through activating epithelial-to-mesenchymal transition.

http://clinicaltrial.gov
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Table 3: Cancer pathways activated in all three patients. All pathways were 
enriched with major expression regulators identified by SNEA with p-value 
smaller than 0.05 according to Fisher exact test.

Pathway Cancer hallmark
F2->angiogenesis Angiogenesis
VEGFR->endothelial proliferation Angiogenesis
N1->N2 neutrophil polarization Avoid immune destruction
OSM signaling Avoid immune destruction
ECM->EMT Invasion & Metastasis
Hypoxia->EMT Invasion & Metastasis
TGFB loop Invasion & Metastasis
PDGF ->EMT Invasion & Metastasis
PDGF-D->EMT Invasion & Metastasis
EGF->EMT Invasion & Metastasis
F2 modulation of vascular permeability Invasion & Metastasis
Coagulation cascade in cancer Invasion & Metastasis
Calveolin -| EMT in lipid rafts Invasion & Metastasis
IGF1R ->EMT Invasion & Metastasis
Wnt ->EMT Invasion & Metastasis
EGF->FOXM1/FOXOA Invasion & Metastasis
FLT1 mediates survival in post-EMT cancer cells Invasion & Metastasis
F2 modulation of cytoskeleton Invasion & Metastasis
F2 -> STAT1/NF-kB Expression Targets Resisting cell death
F2 -> AP-1/CREB/ELK-SRF/SP1 Expression Targets Sustaining proliferation
EGFR activation by apoptotic clearance Sustaining proliferation
"Find me" signals in apoptotic clearance Tumor inflammation

Table 4: List of most common SNEA regulators identified in five tumors from 
three cancer patients.

SNEA 
regulator

Gene ID Patients 
Count

Cell Process

PDGF Functional 
Class

5 EMT

F2 2147 4 Thrombosis, Angiogenesis
KLF5 688 4 EMT
OSM 5008 4 Tumor inflammation
PLAU 5328 4 Thrombosis, UrokinaseR signaling
PLG 5340 4 Thrombosis, Angiogenesis

CDKN2A 1029 3 Cell cycle
CTGF 1490 3 ECM->EMT
E2F3 1871 3 Cell cycle

ephrin-B Functional 
Class

3

F10 2159 3 Thrombosis
HB-EGF 1839 3 EGFR activation

IGF2 3481 3 EMT
IL1A 3552 3
KDR 3791 3 Angiogenesis
LIN9 286826 3 Cell cycle

MMP3 4314 3 ECM->EMT
MYBL2 4605 3 Cell cycle
NOX1 11125 3 ROS activation
OLR1 4973 3 Oxidize-LDL
P2RY6 5031 3 Apoptotic clearance
PDGFD 80310 3 EMT
PPAP2B 8613 3 EGFR activation
PRKCD 5580 3 Apoptotic clearance
SH2B3 10019 3

SLC39A1 27173 3
SPARC 6678 3 ECM->EMT
TGFB2 7042 3 EMT, N1->N2 neutrophil polarization
THBS1 7057 3 Apoptotic clearance

reflects tumor heterogeneity with part of the tumor being quiescent 
and not going through angiogenic switch [17].

Treatment selection for patients using pathway analysis

Figure 3 shows several examples of finding the drugs for a 
patient using pathway analysis in combination with ChemEffect 
knowledgebase available for Pathway Studio. ChemEffect contains 
regulatory effects for drugs found in scientific literature [15]. The 

main criteria for drug selection was that the drug had to be approved 
by FDA for cancer treatment or at very least allowed for cancer clinical 
trial. We then searched for drugs that had efficacy against pathways 
found to be activated in patient tumor according to SNEA analysis. 
If pathway did not have any druggable components we resorted 
to FDA-approved drugs that showed efficacy toward cell process 
that was found to be activated in patient tumor,  e.g. epithelial-to-
mesenchymal transition (EMT) in figure 3B. If several drugs satisfied 
above criteria we selected a drug which efficacy against the same type 
of tumor as in patient had the most support in the literature,  i.e.,  
had the biggest number of articles and clinical trials describing drug 
efficacy towards the appropriate cancer.

Discussion
Novel approach for selection of personalized cancer therapy

We describe the approach for analysis of cancer tumor that 
enables rational therapy design based on molecular mechanism 
responsible for tumor malignancy in a patient. Our approach consists 
of identification of major regulators responsible for differential gene 
expression in patient tumor and subsequent identification of cancer 
hallmark pathways enriched with the regulators. To enable the 
workflow we constructed 49 pathways in Pathway Studio depicting 
various mechanisms of cancer development reported in scientific 
literature. While the underlying technology can be and should be 
optimized further our goal was to achieve validation of the approach 
in clinical settings. The drugs rationally selected based on pathway 
analysis prolonged patient survival beyond Overall Survival estimates 
based on standard of care treatment. Our study demonstrates that 
the analysis of individual tumor sample compared to multiple normal 
controls is sufficient to produce biologically relevant results that can 
be further used as basis for clinical decision to select personalized 
therapeutic intervention. The biological relevance of individual 
patient tumor analysis is confirmed by finding canonical text-book 
pathways activated in the tumor.

We believe that further improvements in technology will enable 
even more precise treatments for cancer patients.  One major 
improvement can come from the manual curation of the Expression 
regulatory relations used by SNEA to calculate major regulators. The 
curation can not only reduce the number of false positives but also 
annotate relations with correct effect sign (positive or negative) and 
with tissue-specific information. The curation of effect sign will allow 
calculation of the correct activation score for each SNEA regulator 
based on the concordance between the directions of expression change 
of each target and effect of the regulation event (i.e.,  transcription 
activation or repression). Such activation score can be used for Gene 
Set Enrichment analysis (GSEA) of cancer pathways [9, 18] instead of 
overlap Fisher’s Exact test that was used in this article.  Annotation 
with tissue specificity should also improve accuracy of SNEA p-value 
calculation that is used to determine regulator significance. Our 
cancer pathway collection can be also expanded since it does not 
yet contain pathway for all cancer hallmarks [13]. We have only 
built pathways containing SNEA regulators in order to interpret 
microarray data from our patients.

The fact that all our patients outlived the life expectancy from the 
current standard of care suggests that individualized therapy selected 
based on molecular profile of the tumor can be better alternative to 
one drug fits all patients model suggested by the standard of care 
approach.  We also argue that selection of patients for clinical trials 
based on the molecular profile of the tumor using our approach can 
significantly improve chances for the trial success.

Cellular mechanisms found in patients with advanced 
cancers

Our approach identifies cell processes driving cancer progression 
in a patient.  These processes can be used for drug selection. All three 
patients analyzed for this article had advanced cancers characterized by 
metastasis and rapid tumor growth according to clinical parameters. 
Consequently,  we have identified processes activated in these patients 



• Page 11 of 12 •ISSN: 2378-3419Castillos and Yuryev. Int J Cancer Clin Res 2016, 3:043

that confer advanced tumorigenesis. Several pathways were built by 
translation of data obtained from in vitro studies for patient data.  
Identification of SNEA regulators from these translational pathways 
in patient tumors further confirmed that these in vitro findings were 
applicable in clinics.  For example,  pathway “EGFR activation by 
apoptotic clearance” was built by combining the established role of 
lysophosphatidic acid (LPA) in the activation of EGFR signaling in 
cancer [19,20] with very recent in vitro studies showing that tumor-
associated macrophages is the source of HB-EGF,  which is EGFR 
ligand that is activated by LPA [21]. We hypothesize that tumor-
associated macrophages are activated by apoptotic debris that is in 
abundance inside the tumor. Lysophosphatidylcholine (LPC) is the 
major “Find-me” signal attracting macrophages to apoptotic debris 
[22,23] and at the same time is precursor of LPA.  Thus,  dying 
tumor cells activate EGFR pathway through macrophage activation 
to sustain tumor growth. “EGFR activation by apoptotic clearance” 
pathway resembles wound healing mechanism that was adapted for 
tumor growth.

We observed thrombin activation in all three patients (Table 3 and 
Table 4). This further supports a role of platelet-induced coagulation 
in tumor progression [24-26]. Thrombin can promote several cancer 
hallmarks. It sustains tumor growth via activation of oncogenic 
AP-1transription factor. Thrombin activates HIF1A transcription 
factor [27] which mimics hypoxic state and leads to angiogenesis by 
activating endothelial cells and to macrophage polarization enabling 
tumor to avoid immune destruction [28]. Thrombin also activates 
ROCK kinase causing cytoskeleton reorganization. Cytoskeleton 
reorganization in endothelial cells promotes their migration and 
therefore further promotes angiogenesis and vascular permeability; 
on the other hand activation of cytoskeleton reorganization in tumor 
cells promotes its invasiveness [29,30].

We developed “TGF-beta loop” pathway that depicts mechanism 
of epithelial-to-mesenchymal transition induced by TGF-β mediates. 
TGF-β is potent autocrine inducer of epithelial-to-mesenchymal 
transition in the presence of growth factors [30]. While the autocrine 
secretion of TGF-β in tumors was described previously [31] as TGF-
β->SNAIL->SMAD3/4-> TGF-β loop [32-36] we were able to infer 
the existence of multiple secondary loops activating latent TGF-β 
activation from existing literature. These secondary loops are mediated 
by RUNX transcription factors [37] and their dimerization with 
ETS1/2 on target gene promoters [38-40]. RUNX induces expression 
of TGF-β receptors [38],  while ETS1 activates expression of integrin-
beta 6 [41],  CD44 [42] and FLT1 [43]. AlphaVbeta6 integrin complex 
binds and activates latent TGF-β [44],  CD44 binds TGF-β receptors 
[45] and activates latent TGF-β [46],  FLT1 mediates survival in post-
EMT cancer cells [47].  Both RUNX and ETS1 activate expression 
of MMP9 [48,49],  which cleaves and activates latent TGF-β [50,51]. 
RUNX transcription factor was shown to be activated in metastatic 
breast cancer [48] and in thyroid carcinoma [49].

We found that the similarity between patients was higher on 
pathway level than on the level of individual expression activators. 
Figure 2 depicts pathways identified in different patients with 
their respective expression activators highlighted by one color 
corresponding to each patient. Thus,  even if patients had different 
set of expression regulators they still pointed to the same pathway 
suggesting that the same pathway can be activated in individual 
tumors albeit different mechanisms. Similarity of tumors on pathway 
level may be explained by the fact that all patients had metastatic 
cancer. Because we selected the same treatments for patients with 
similar activated pathways our finding also suggests that patient with 
similar activated pathways can have similar clinical outcome despite 
the difference in the underlying molecular mechanism for pathway 
activation in their tumors.

Drug availability to target patient pathways

The most logical choice of anti-cancer therapy is a drug inhibiting 
major expression regulators activated in patient tumor. Our experience 
with three patients revealed that many regulators,  especially 

transcription factors,  do not have either direct or indirect FDA 
approved inhibitors, while many existing FDA-approved inhibitors 
found in Pathway Studio are not approved for cancer treatment by 
FDA. Therefore for most patients we resorted to experimental drugs 
that have shown some efficacy against appropriate type of cancer 
and also could inhibit the cell process indicated by pathway analysis 
(Table 3). Noteworthy,  in cases when FDA-approved drugs were 
not available for SNEA regulators we always were able to find plant 
extracts with reported inhibitory properties.
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